Viscosity and Thermal Conductivity of Binary Eutectics of Alkali Metals in the Vapor Phase

V. M. Anisimov,¹ N. I. Sidorov,¹ E. L. Studnikov,¹ Yu. V. Tarlakov,¹ and V. S. Yargin¹

Received August 7, 1989

Values calculated for the dynamic viscosity and thermal conductivity are presented for vapors of binary eutectics of the alkali metals at temperatures from 800 to 1500 K and at pressures from 100 to 8×10^5 Pa. Data are presented for the vapors of the systems Li + Na, Na + Rb, Na + Cs, K + Rb, K + Cs, Na + K, and Rb + Cs. The values of the concentrations of the five components in the vapor phase of each binary eutectic are also presented. The accuracy of the calculated viscosities is estimated to be within 4–5% and the accuracy of the calculated thermal conductivities is estimated to be within 8–10%.

KEY WORDS: alkali metals; cesium; eutectics; lithium; metal vapors; potassium; rubidium; sodium; thermal conductivity; viscosity.

1. THEORY

This paper is concerned with the calculation of the transport properties of saturated and superheated vapors of binary eutectics of alkali metals. In the range of temperatures T from 800 to 1500 K and pressures P from 10^2 to 8×10^5 Pa, the vapors of these eutectics can be treated as ideal-gas mixtures consisting of atoms of the types Y and Z and of diatomic molecules of the types Y₂, Z₂, and YZ in chemical equilibrium through the dissociation reactions

$$Y + Y = Y_2, \qquad Z + Z = Z_2, \qquad Y + Z = YZ$$
 (1)

The thermophysical properties of such vapor mixtures depend on the molar concentrations y_{Y_2} , y_{Z_2} , y_{YZ} , y_Y , and y_Z of the species. The equilibrium

¹ Moscow Aviation Institute, Volokolamskoye Shosse 4, 125871 Moscow, USSR.

composition of the vapor in turn is determined by the pressure and temperature and by the molar concentrations x_{Y} and x_{Z} of the metals in the liquid phase.

We have calculated the equilibrium composition of the vapor by solving the following system of equations:

$$\frac{y_{Y}^{2}}{y_{Y_{2}}}P = \exp\left(\frac{2\phi_{Y} - \phi_{Y_{2}}}{R} - \frac{D_{Y_{2}}^{0}}{RT}\right)$$
(2)

$$\frac{y_{Z}^{2}}{y_{Z_{2}}}P = \exp\left(\frac{2\phi_{Z} - \phi_{Z_{2}}}{R} - \frac{D_{Z_{2}}^{0}}{RT}\right)$$
(3)

$$\frac{y_{\rm Y} y_{\rm Z}}{y_{\rm YZ}} P = \exp\left(\frac{\phi_{\rm Y} + \phi_{\rm Z} - \phi_{\rm YZ}}{R} - \frac{D_{\rm YZ}^0}{RT}\right) \tag{4}$$

$$y_{Y_2} + y_{Z_2} + y_{YZ} + y_Y + y_Z = 1$$
(5)

$$\frac{2y_{Y_2} + y_{YZ} + y_Y}{2y_{Z_2} + y_{YZ} + y_Z} = \frac{x_Y P_Y^0(1 + y'_{Y_2})}{x_Z P_Z^0(1 + y'_{Z_2})}$$
(6)

Here ϕ_{α} is the reduced chemical potential of species α , D_{β}^{0} is the dissociation energy of molecule β , R is the gas constant, P_{Y}^{0} and P_{Z}^{0} are the partial vapor pressures of the metals Y and Z, x_{Y} and x_{Z} are the molar concentrations of the metals Y and Z in the liquid phase, and $y'_{Y_{2}}$ and $y'_{Z_{2}}$ are the molar concentrations of the diatomic molecules Y_{2} and Z_{2} in the saturated vapors of the *pure* alkali metals Y and Z. Equations (2)-(4) represent van't Hoff's law, Eq. (5) Dalton's law, and Eq. (6) Raoult's law.

In solving these equations the pressures were taken for lithium from Ref. 1, for sodium from Ref. 2, and for the other metals from Ref. 3. The chemical potentials ϕ_{α} were taken from Ref. 4. The dissociation energies D_Y^0 and D_Z^0 of the homonuclear molecules were taken from Ref. 5, and the dissociation energies D_{YZ}^0 of the heteronuclear molecules from Ref. 4. For the superheated vapor states P_Y^0 , P_Z^0 , y'_{Y_2} , and y'_{Z_2} were calculated not at the actual temperature T, but at the temperature T_1 at saturation at the same pressure.

The dynamic viscosity η and the thermal conductivity λ were calculated on the basis of the kinetic theory of chemically reacting ideal gases [6, 7]. The cross section of the atom-atom and atom-molecule collisions, needed for the calculation of the transport properties, were determined from an analysis of the experimental data for the viscosity and thermal conductivity of the vapors of the pure alkali metals [8]. The other cross sections were determined by applying the combination rules of Ref. 6.

I. Viscosity η and Thermal Conductivity λ for Vapors of Binary Eutectics of Alkali Metals as a	Function of Temperature (in K) and Pressure (in Pa)	
ıble I.		

H	Viscos	sity η and	l Therma Function	l Condu of Tem	uctivity . perature	λ for Vapo e (in K) a	ors of Bi nd Press	nary Eu sure (in	ntectics (Pa)	of Alkali	Metals	as a		
					Li + N	a, $x_{\rm Li} = 0.0$)3							
1	-	$0^7\eta$, Pa	s.						10 ⁴ λ,	$W \cdot m^{-1}$	• K1			
1 0.3		0.8	2	4	8	At satu-	0.001	0.01	0.3	0.8	7	4	80	At satu-
7 1037		1132	1239	1337	1454	curve	702	807	1037	1132	1239	1337	1454	curve
		ļ												
						161	261							369
6						164	263	328						394
6						167	271	305						415
0						169	280	300						433
0						171	291	302						448
9 177						173	302	309	447					460
8 195						175	313	318	416					468
7 211		183				176	325	327	397	463				475
5 225		200				179	336	338	387	442				480
4 238		216	184			181	347	349	384	427	480			484
2 249		231	201			183	359	360	385	418	466			487
0 260		245	218	189		186	370	371	389	415	455	486		489
9 270		257	233	206		189	382	382	395	415	448	478		491
7 280		269	248	222		192	393	393	403	418	445	472		492
5 289		280	261	237	206	195	404	404	412	423	445	469	490	493

Properties of Alkali Metal Vapors

877

1			At satu-	curve		163	177	190	202	212	222	231	239	247	253	260	265	270	275	280
			8	1350														268	271	275
			4	1235											252	252	254	257	261	266
		$\cdot K^{-1}$	2	1139									237	236	237	239	242	247	252	258
		$W \cdot m^{-1}$	0.8	1033							217	214	214	216	220	225	231	237	244	251
		$10^{4}\lambda$, ¹	0.3	939					197	193	192	194	199	204	210	217	224	231	239	247
			0.05	806			159	158	162	167	173	180	187	195	203	210	218	226	234	242
<i>(p</i>	12		0.001	616		127	134	142	150	158	166	174	182	190	198	205	213	221	229	237
(Continue	$x_{\rm Na} = 0.2$		At satu-	curve		145	150	156	161	165	170	174	178	182	186	190	194	198	202	206
Table I	Na + K		8	1350														209	223	237
			4	1235											189	204	219	233	246	259
		s	2	1139									181	196	210	224	237	250	262	274
		$0^7\eta$, Pa \cdot	0.8	1033							174	189	203	216	228	240	251	262	273	283
		10	0.3	939					163	178	191	204	215	226	237	247	258	268	278	288
			0.05	806			157	170	181	192	202	212	222	232	242	251	261	270	280	290
			0.001	616		156	166	175	185	194	204	213	223	232	242	252	261	271	280	290
			$10^{-5}P(Pa)$	T_1	T	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500

Continue
<u> </u>
-
Ι
9
_
[

878

Anisimov, Sidorov, Studnikov, Tarlakov, and Yargin

		4	1 12			
			5 11			
	$^{1} \cdot \mathrm{K}^{-1}$	7	1056			
	W · m ^{- 1}	0.8	954			
	10 ⁴ λ, ¹	0.3	864			106
		0.05	738	87.2	87.9	90.2
80		0.001	560	77	81.5	86
$x_{Na} = 0.1$		At satu-	curve	191	198	205
		8	1261			
		4	1150			
		2	1056			
	$^{7}\eta$, Pa \cdot s	0.8	954			
	10	0.3	864	2		213
		0.05	738	202	217	230
		0.001	560	210	222	234

Table I. (Continued)

							Na + K	b, $x_{Na} = 0$	01.							
			Ξ) ⁷ η, Pa ·	s						10 ⁴ λ,	W · m ⁻¹	·K ⁻¹		- - - -	
ΙÔ	001	0.05	0.3	0.8	5	4	∞	At satu-	0.001	0.05	0.3	0.8	5	4	∞	At satu-
5	99	738	864	954	1056	1150	1261	curve	560	738	864	954	1056	1150	1261	curve
1																
2	010	202						191	LL	87.2						100
3	222	217						198	81.5	87.9						106
2	34	230	213					205	86	90.2	106					112
~	346	244	230					212	90.5	93.5	104					118
3	259	256	246	229				218	95	97.3	105	116				123
2	11:	269	261	247				224	9.66	101	107	116				128
2	383	282	275	263	241			230	104	106	110	117	128			132
2	:95	294	289	279	259	236		236	109	110	113	119	128	136		136
3	107	307	302	294	276	255		242	113	114	117	122	129	137		140
3	120	319	315	308	293	272		248	118	119	121	125	131	138		143
ŝ	132	331	328	322	308	290	263	253	122	123	125	128	133	139	145	147
Э	44	343	341	335	323	306	281	259	127	128	130	132	136	142	147	150
ξ	156	356	353	348	338	322	298	265	131	132	134	136	140	144	150	153
ŝ	168	368	366	362	352	338	315	271	135	137	138	140	144	147	152	156
3	181	380	378	374	366	353	332	277	140	141	143	144	147	151	155	159

Properties of Alkali Metal Vapors

879

		• K ⁻¹	2 4 8 At satu-	1045 1142 1258 curve		71.1	75.3	79.2	82.9	86.5	89.3 89.8	88.6 92.9	88.6 95.4 95.9	89.2 95.4 98.8	90.3 95.9 102	91.9 96.8 103 104	93.7 98.1 104 107	95.7 99.7 105 109	98 102 106 112	100 104 108 114
		W · m	0.8	940					81.7	80.4	80.2	80.8	81.9	83.5	85.5	87.6	89.9	92.4	94.9	97.5
		$10^{4}\lambda$,	0.1	764		66	65.3	66	67.4	69.3	71.5	73.8	76.2	78.7	81.3	83.9	86.5	89.2	91.9	94.6
			0.05	719		61.5	62.3	63.9	62.9	68.2	70.6	73.1	75.6	78.2	80.8	83.4	86.1	88.8	91.5	94.2
`	21		0.001	542		56.3	58.9	61.6	64.2	66.8	69.4	72	74.7	77.3	79.9	82.5	85.2	87.9	90.6	93.3
	s, $x_{Na} = 0.2$		At satu-	curve		222	229	237	244	251	257	264	270	276	283	289	295	302	308	315
	Na + C		∞	1258												298	314	330	346	361
			4	1142									272	289	305	321	336	350	364	378
		ŝ	5	1045							258	275	291	307	321	335	349	363	376	388
) ⁷ η, Pa .	0.8	940					246	262	278	292	306	320	333	346	358	371	383	395
		1(0.1	764		227	242	255	268	280	293	305	317	328	340	352	364	375	387	399
			0.05	719		232	245	258	270	282	294	306	317	329	341	352	364	376	387	399
			0.001	542		237	248	260	272	283	295	306	318	330	341	353	365	376	388	399
			$10^{-5}P(Pa)$	T_1	T	800	850	906	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500

Table I. (Continued)

880

Anisimov, Sidorov, Studnikov, Tarlakov, and Yargin

		K - 1	2 4 8 At satu-	1056 1149 1259 curve		108	115	122	127	132	137	136 141	137 144 144	138 145 147	140 146 150	143 148 152 153	146 150 155 156	149 153 157 158	153 157 160 161	157 160 163 163
ĺ		V · m ^{- I} ·	0.8	955						125	125	125	127	130	134	137	141	146	150	155
		10 ⁴ λ, W	0.3	866				114	113	113	115	118	121	125	130	134	139	143	148	153
			0.01	655		83.6	87.3	91.6	96.2	101	106	110	115	120	125	129	134	139	144	148
<i>(p</i>	~		0.001	564		80.3	85	89.7	94.4	99.2	104	109	113	118	123	128	132	137	142	146
(Continue	$x_{\rm K} = 0.3$		At satu-	curve		184	190	196	201	207	212	217	222	227	232	237	242	247	253	258
Table I.	$\mathbf{K} + \mathbf{R}\mathbf{b}$		∞	1259												247	265	282	299	315
			4	1149									222	240	258	275	292	308	323	338
			7	1056								229	247	264	280	296	311	325	339	353
		s	0.8	955						219	236	253	268	283	298	311	325	338	351	364
) ⁷ η, Pa	0.3	866				205	222	238	253	267	280	294	306	319	332	344	356	369
		H	0.01	655		204	217	229	241	253	266	278	290	302	314	326	338	350	362	374
			0.001	564		207	219	231	243	255	267	279	291	303	315	327	340	352	364	376
			10 ⁻⁵ P(Pa)	T_1	Т	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500

41.14 Ś H h

Properties of Alkali Metal Vapors

		At satu-	curve		82.8	89.1	95	101	106	110	115	119	122	126	129	132	136	139	142
		∞	1268												128	130	132	134	137
		4	1154										119	121	122	124	127	129	132
	. K ⁻¹	7	1059								111	111	112	114	116	119	122	125	128
	V · m ¹	0.8	955						99.7	99.5	100	102	104	107	110	113	116	120	123
	10 ⁴ λ, V	0.1	780		78.9	7.77	78.4	80.2	82.6	85.4	88.3	91.5	94.7	98	101	105	108	111	115
		0.01	648		64.7	67.4	70.3	73.3	76.4	79.5	82.6	85.8	88.9	92.1	95.3	98.4	102	105	108
		0.001	554		61.2	64.1	67.1	70.1	73.1	76.1	79.1	82.1	85	88	91	94	97.1	100	103
$x_{\rm K} = 0.51$		At satu-	curve		214	220	226	231	237	242	247	252	257	262	267	272	277	282	288
K + C		~	1268	ļ											275	291	307	323	338
		4	1154										268	285	301	316	331	345	359
	s	5	1059								257	274	289	304	319	333	346	360	373
	$^{7}\eta$, Pa	0.8	955						247	263	278	293	306	320	333	345	358	370	382
	10	0.1	780		217	232	246	259	272	284	296	308	320	332	344	355	367	379	390
1		0.01	648		231	242	254	266	278	289	301	313	324	336	348	359	371	382	394
		0.001	554		233	245	257	268	280	291	303	315	326	338	349	361	373	384	396
		$10^{-5}P$ (Pa)	T_1		800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500

Table I. (Continued)

882

Anisimov, Sidorov, Studnikov, Tarlakov, and Yargin

			At satu-	curve		80.7	85.2	89.1	92.6	95.6	98.3	101	103	105	107	109	110	112	114	115
			∞	1231											107	108	110	111	114	116
			4	1120									102	102	104	105	107	109	111	114
		K -1	7	1027							96.8	96.6	97.1	98.3	9.99	102	104	107	110	113
		/ • m ⁻¹ •	0.8	926					90	89	89.2	90.2	91.9	94	96.4	99.1	102	105	108	111
		10 ⁴ λ, W	0.3	840			83.4	81.4	81.1	82.1	83.8	86	88.6	91.4	94.3	97.3	100	104	107	110
			0.05	715		68.8	69.8	71.8	74.3	LT	80	83	86.1	89.3	92.5	95.7	98.9	102	105	109
<i>(p</i>	Ŀ		0.001	542		62.1	65.2	68.4	71.5	74.7	77.8	80.9	84.1	87.2	90.4	93.5	96.7	99.8	103	106
(Continue	$x, x_{\rm Rb} = 0.4$		At satu-	curve		209	216	222	229	235	241	247	253	259	265	271	277	283	289	296
fable I.	Rb + Cs		∞	1231											269	286	303	319	335	351
			4	1120									260	277	294	310	326	341	356	370
		s	5	1027							246	264	281	297	312	327	341	355	368	382
		'η, Pa ·	0.8	926					234	252	268	283	298	312	325	338	351	364	377	389
		10	0.3	840			219	236	251	266	280	293	306	319	332	344	356	369	381	393
			0.05	715		223	237	250	262	275	287	299	311	323	335	347	359	371	383	395
			0.001	542		230	242	254	266	278	290	301	313	325	337	349	361	372	384	396
			$10^{-5}P(Pa)$	T_1	T	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500

Properties of Alkali Metal Vapors

Li + Na	$T(\mathbf{K})$	y_{Li_2}	y_{Na_2}	<i>Y</i> LiNa	y _{Li}	y _{Na}
$P = 10^{3} \text{ Pa}$	850	314×10^{-11}	244×10^{-4}	581×10^{-8}	317×10^{-7}	975.5×10^{-3}
	1150	645×10^{-13}	161×10^{-5}	300×10^{-9}	364×10^{-7}	998.4×10^{-3}
	1500	408×10^{-14}	251×10^{-6}	378×10^{-10}	366×10^{-7}	999.7×10^{-3}
$P = 3 \times 10^4$ Pa	1050	844×10^{-10}	856×10^{-4}	722×10^{-7}	137×10^{-6}	914.2×10^{-3}
	1250	176×10^{-10}	244×10^{-4}	210×10^{-7}	176×10^{-6}	975.3×10^{-3}
	1500	324×10^{-11}	742×10^{-5}	580×10^{-8}	188×10^{-6}	992.4×10^{-3}
$P = 4 \times 10^5$ Pa	1400	640×10^{-9}	120×10^{-3}	310×10^{-6}	523×10^{-6}	878.6×10^{-3}
-	1450	517×10^{-9}	100×10^{-3}	262×10^{-6}	556×10^{-6}	898.7×10^{-3}
	1500	417×10^{-9}	841×10^{-4}	221×10^{-6}	585×10^{-6}	915×10^{-3}
			At satu	uration curve		
	800	535×10^{-11}	402×10^{-4}	901 × 10 ⁻⁸	268×10^{-7}	959.8×10^{-3}
	1150	240×10^{-9}	118×10^{-3}	157×10^{-6}	228×10^{-6}	881.1×10^{-3}
	1500	200×10^{-8}	174×10^{-3}	697×10^{-6}	803×10^{-6}	824.6×10^{-3}
Na + K	$T(\mathbf{K})$	y _{Na2}	Ук2	y _{NaK}	y _{Na}	Уĸ
$\overline{P=5\times10^3}$ Pa	850	478×10^{-6}	186×10^{-4}	419×10^{-5}	611×10^{-4}	915.7×10^{-3}
	1200	241×10^{-7}	181×10^{-5}	325×10^{-6}	645×10^{-4}	933.3×10^{-3}
	1500	526×10^{-8}	549×10^{-6}	882×10^{-7}	647×10^{-4}	934.7×10^{-3}
$P = 8 \times 10^4 \text{ Pa}$	1050	284×10^{-5}	519×10^{-4}	182×10^{-4}	102×10^{-3}	825×10^{-3}
	1250	866×10^{-6}	194×10^{-4}	646×10^{-5}	112×10^{-3}	860.8×10^{-3}
	1500	269×10^{-6}	768×10^{-5}	236×10^{-5}	116×10^{-3}	873.9×10^{-3}
$P = 8 \times 10^5 \text{ Pa}$	1400	702×10^{-5}	758×10^{-4}	373×10^{-4}	150×10^{-3}	729.9×10^{-3}
	1450	592×10^{-5}	655×10^{-4}	321×10^{-4}	154×10^{-3}	742.1×10^{-3}
	1500	502×10^{-5}	569×10^{-4}	277×10^{-4}	158×10^{-3}	752.3×10^{-3}
			At satu	iration curve		
	800	759×10^{-6}	275×10^{-4}	629×10^{-5}	579×10^{-4}	907.5×10^{-3}
	1150	500×10^{-5}	704×10^{-4}	289×10^{-4}	119×10^{-3}	776.5×10^{-3}
	1500	105×10^{-4}	978×10^{-4}	527×10^{-4}	158×10^{-3}	681×10^{-3}
Na + Rb	<i>T</i> (K)	y_{Na_2}	y _{Rb2}	y _{NaRb}	YNa	y _{Rb}
$P = 10^2 \text{ Pa}$	800	205×10^{-10}	392×10^{-6}	291×10^{-8}	203×10^{-5}	997.5×10^{-3}
	1150	669×10^{-12}	363×10^{-7}	206×10^{-9}	203×10^{-5}	997.9×10^{-3}
	1500	104×10^{-12}	953×10^{-8}	481×10^{-10}	204×10^{-5}	997.9×10^{-3}
$P = 2 \times 10^5$ Pa	1100	402×10^{-6}	741×10^{-4}	703×10^{-5}	295×10^{-4}	888.9×10^{-3}
	1300	137×10^{-6}	330×10^{-4}	301×10^{-5}	325×10^{-4}	931.4×10^{-3}
	1500	566×10^{-7}	172×10^{-4}	151×10^{-5}	336×10^{-4}	947.7×10^{-3}
$P = 8 \times 10^5$ Pa	1300	103×10^{-5}	106×10^{-3}	148×10^{-4}	447×10^{-4}	833.7×10^{-3}
	1400	704×10^{-6}	785×10^{-4}	109×10^{-4}	475×10^{-4}	862.3×10^{-3}
	1500	491×10^{-4}	596 × 10 ⁻⁴	826×10^{-5}	494×10^{-4}	882.2×10^{-3}
			At satu	ration curve		
	800	789×10^{-7}	454×10^{-4}	194×10^{-5}	111×10^{-4}	941.5×10^{-3}
	1150	804×10^{-6}	105×10^{-3}	121×10^{-4}	353×10^{-4}	847.1×10^{-3}
	1500	211×10^{-3}	142×10^{-3}	264×10^{-4}	580×10^{-4}	771.5×10^{-3}

 Table II.
 Compositions of Vapors of Binary Eutectics of Alkali Metals: Mole Fractions of the Monoatomic and Diatomic Species at Various Temperatures and Pressures

Na + Cs	T(K)		V _C .	KN: C		V.c.
		JNa2	J Cs ₂	J NaCs	J Na	
$P = 5 \times 10^3 \text{ Pa}$	800	931×10^{-8}	132×10^{-4}	615×10^{-6}	613×10^{-5}	980×10^{-3}
	1150	356×10^{-9}	150×10^{-5}	460×10^{-7}	664 × 10 ⁻⁵	991.8×10^{-3}
-	1500	558×10^{-10}	431 × 10 ⁻⁶	106×10^{-7}	667×10^{-5}	992.9×10^{-3}
$P = 2 \times 10^5$ Pa	1050	467×10^{-6}	776×10^{-4}	116×10^{-4}	261×10^{-4}	884.1×10^{-3}
	1250	171×10^{-6}	345×10^{-4}	498×10^{-5}	316×10^{-4}	928.7×10^{-3}
	1500	580×10^{-7}	157×10^{-4}	207×10^{-5}	340×10^{-4}	948.2×10^{-3}
$P = 8 \times 10^5$ Pa	1300	110×10^{-5}	933×10^{-4}	211×10^{-4}	462×10^{-4}	838.3×10^{-3}
	1400	790×10^{-6}	704×10^{-4}	158×10^{-4}	503×10^{-4}	862.7×10^{-3}
	1500	570×10^{-6}	542×10^{-4}	120×10^{-4}	532×10^{-4}	879.9×10^{-3}
			At satu	aration curve		
	800	669×10^{-7}	407×10^{-4}	289×10^{-5}	906×10^{-5}	947.3 × 10 ⁻³
	1150	823×10^{-6}	936×10^{-4}	175×10^{-4}	347×10^{-4}	853.3×10^{-3}
	1500	247×10^{-5}	125×10^{-3}	380×10^{-4}	640×10^{-4}	770.7×10^{-3}
K + Rb	$T(\mathbf{K})$	$y_{\mathbf{K}_2}$	y _{Rb2}	YKRb	Уĸ	Уrь
$P = 10^3 \text{ Pa}$	800	118×10^{-6}	297×10^{-5}	136×10^{-5}	127×10^{-3}	868.2×10^{-3}
	1150	881×10^{-8}	277×10^{-6}	117×10^{-6}	128×10^{-3}	871.3×10^{-3}
	1500	207×10^{-8}	727×10^{-7}	306×10^{-7}	128×10^{-3}	871.5×10^{-3}
$P = 2 \times 10^5 \text{ Pa}$	1100	484×10^{-5}	492×10^{-4}	369×10^{-4}	120×10^{-3}	723.9×10^{-3}
1 2/10 14	1300	211×10^{-5}	219×10^{-4}	166×10^{-4}	200×10^{-3}	723.3×10^{-3}
	1500	107×10^{-5}	114×10^{-4}	870×10^{-5}	206×10^{-3}	759.1×10^{-3}
$P = 8 \times 10^5 \text{ Pa}$	1300	804×10^{-5}	684×10^{-4}	573×10^{-4}	105×10^{-3}	671×10^{-3}
1 0/10 14	1400	600×10^{-5}	509×10^{-4}	432×10^{-4}	205×10^{-3}	$601 4 \times 10^{-3}$
	1500	455×10^{-5}	387×10^{-4}	331×10^{-4}	203×10^{-3} 213×10^{-3}	710×10^{-3}
		<u> </u>	At satu	aration curve		
	800	210×10^{-5}	314×10^{-4}	187×10^{-4}	151×10^{-3}	796.5×10^{-3}
	1150	740×10^{-5}	688×10^{-4}	542×10^{-4}	185×10^{-3}	684.4×10^{-3}
	1500	124×10^{-4}	917×10^{-4}	839×10^{-4}	103×10^{-3}	614.9×10^{-3}
<u> </u>						
K + Cs	$T(\mathbf{K})$	<i>y</i> _{K₂}	\mathcal{Y}_{Cs_2}	y _{KCs}	Ук	y _{Cs}
$P = 10^2 \text{ Pa}$	800	953×10^{-8}	216×10^{-6}	711×10^{-7}	114×10^{-3}	885.4×10^{-3}
	1150	700×10^{-9}	238×10^{-7}	749×10^{-8}	114×10^{-3}	885.6×10^{-3}
	1500	164×10^{-9}	687×10^{-8}	209×10^{-8}	114×10^{-3}	885.6×10^{-3}
$P = 2 \times 10^5$ Pa	1100	128×10^{-4}	297×10^{-4}	347×10^{-4}	301×10^{-3}	621.4×10^{-3}
	1300	542×10^{-5}	138×10^{-4}	163×10^{-4}	320×10^{-3}	644×10^{-3}
	1500	270×10^{-5}	747×10^{-5}	883×10^{-5}	328×10^{-3}	653.1×10^{-3}
$P = 8 \times 10^5 \text{ Pa}$	1300	229×10^{-4}	402×10^{-4}	572×10^{-4}	329×10^{-3}	550.2×10^{-3}
	1400	168×10^{-4}	302×10^{-4}	435×10^{-4}	344×10^{-3}	565.5×10^{-3}
	1500	126×10^{-4}	233×10^{-4}	337×10^{-4}	354×10^{-3}	576.4×10^{-3}
			At satu	ration curve		
	800	495×10^{-5}	197×10^{-4}	155×10^{-4}	226×10^{-3}	733.9×10^{-3}
	1150	199×10^{-4}	399×10^{-4}	510×10^{-4}	309×10^{-3}	580.3×10^{-3}
	1500	354×10^{-4}	491×10^{-4}	820×10^{-4}	345×10^{-3}	487.9×10^{-3}
					10	· · · · · · · · · · · · · · · · · · ·

 Table II. (Continued)

Rb + Cs	$T(\mathbf{K})$	y _{Rb2}	y _{Cs2}	y _{RbCs}	y _{Rb}	У _{Сs}
$P = 10^2$ Pa	800	426×10^{-7}	124×10^{-7}	144×10^{-6}	329×10^{-3}	670.9×10^{-3}
	1150	394×10^{-8}	137×10^{-7}	161×10^{-7}	329×10^{-3}	671.1×10^{-3}
	1500	103×10^{-8}	394×10^{-8}	469×10^{-8}	329×10^{-3}	671.1×10^{-3}
$P = 2 \times 10^5 \text{ Pa}$	1050	189×10^{-4}	264×10^{-4}	478×10^{-4}	391×10^{-3}	515.6×10^{-3}
	1250	807×10^{-5}	118×10^{-4}	217×10^{-4}	417×10^{-3}	541.8×10^{-3}
	1500	350×10^{-5}	536×10^{-5}	101×10^{-4}	427×10^{-3}	553.6×10^{-3}
$P = 8 \times 10^5 \text{ Pa}_{.}$	1250	282×10^{-4}	361×10^{-4}	712×10^{-4}	389×10^{-3}	474.9×10^{-3}
	1400	180×10^{-4}	235×10^{-4}	471×10^{-4}	413×10^{-3}	498.8×10^{-3}
	1500	137×10^{-4}	181×10^{-4}	366×10^{-4}	422×10^{-3}	509.4×10^{-3}
	At saturation curve					
	800	103×10^{-4}	164×10^{-4}	258×10^{-4}	377×10^{-3}	570.3×10^{-3}
	1150	266×10^{-4}	351×10^{-4}	668×10^{-4}	386×10^{-3}	485.4×10^{-3}
	1500	393×10^{-4}	455×10^{-4}	983×10^{-4}	384×10^{-3}	432.7×10^{-3}

Table II.(Continued)

2. RESULTS

The values obtained for the viscosity η and the thermal conductivity λ of the vapors of the binary eutectics Li + Na, Na + K, Na + Rb, Na + Cs, K + Rb, K + CS, and Rb + Cs as a function of temperature and pressure are presented in Table I. The values obtained for the composition of these vapors as a function of temperature and pressure are presented in Table II. The calculations were performed for only one composition of the liquid phase. The concentrations $x_{\rm Y}$ and $x_{\rm Z}$ of the eutectic solutions were taken from Ref. 9. Experimental data for the composition of binary solutions with lithium are not available in the literature except for the system Li + Na. Hence, we did not calculate the transport coefficients of the vapors of the eutectics Li + K, Li + Rb, and Li + Cs.

In Figs. 1 and 2 we show the viscosity and the thermal conductivity of the vapor of the eutectic Na + K at various pressures as a function of temperature. It turns out that the dependence of the transport properties of the vapor of the binary eutectics on temperature and pressure is similar to that of the transport properties of the vapors of the pure alkali metals [8]. The viscosity decreases and the thermal conductivity increases with increasing pressure. This is the case not only for the vapor of Na + K but also for the vapors of the other eutectics.

The values of the viscosity and thermal conductivity of the vapors of Na + K differ little from the value of the viscosity and thermal conductivity of potassium vapors. For example, the viscosity of the vapor of the eutectics Na + K on the saturation line is only 2-3% larger than the viscosity

Fig. 1. Viscosity of the vapor of the eutectic Na + K as a function of temperature at various pressures.

of the vapor of pure potassium in the entire temperature range, while the thermal conductivity of Na + K and pure K are equal to within 10–13%. These small differences in the transport properties of the vapor of the eutectic Na + K and of the vapor of pure potassium is related to a predominant concentration of K and K_2 in the vapor mixture, as can be seen from Table II.

The values obtained for the viscosity have an estimated accuracy of 4-5% and those obtained for the thermal conductivity have an estimated accuracy of 8-10%.

Comprehensive tables for the viscosity and thermal conductivity of vapors of binary solutions of alkali metals have been published elsewhere [10].

Fig. 2. Thermal conductivity of the vapor of the eutectic Na + K as a function of temperature at various pressures.

REFERENCES

- V. S. Yargin, N. I. Sidorov, E. L. Studinikov, and Yu. K. Vinogradov, *Inzhenernofiz. Zhur.* 43:494 (1982).
- 2. V. S. Yargin, N. I. Sidorov, and E. L. Studnikov, *Physical Processes in Neutral and Ionized Gases* (MAI, Moscow, 1981), p. 51.
- I. Ya. Michaylov, M. A. Pokrasin, V. V. Rachupkin, L. R. Fokin, and N. E. Chandomirova, in VII Vsesoyuznaya Konferenciya po teplofizicheskim svoistvam vechestv, tezicy ocnovnych dokladov (FAN, Taskhent, 1982), p. 12.
- 4. V. P. Glushko, in Handbook for Thermophysical Properties of Individual Substaces, Vol. 4, Part 2 (Nauka, Moscow 1982), p. 441.
- 5. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (Wiley, New York 1975), p. 86.
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
- 7. R. S. Brokaw, J. Chem. Phys. 32:1005 (1960).
- 8. N. B. Vargaftik and V. S. Yargin, p. 785.
- 9. P. E. Potter and M. H. Rand, in *Handbook of Thermodynamics and Transport Properties of Alkali Metals*, Roland W. Ohse, ed. (Blackwell Scientific, Oxford, 1985), p. 919.
- N. I. Sidorov, V. S. Yargin, V. M. Anisimov, and Yu. V. Tarlakov, Publ. deposited in VINITI, No. 5737-B86 (1986); No. 409-B87 (1987); No. 2554-B87 (1987); No. 2054-B87 (1987); No. 2985-B87 (1987); No. 2983-B87 (1987); No. 2984-B87 (1987).